Highly Specific and Efficient CRISPR/Cas9-Catalyzed Homology-Directed Repair in Drosophila

نویسندگان

  • Scott J. Gratz
  • Fiona P. Ukken
  • C. Dustin Rubinstein
  • Gene Thiede
  • Laura K. Donohue
  • Alexander M. Cummings
  • Kate M. O’Connor-Giles
چکیده

We and others recently demonstrated that the readily programmable CRISPR/Cas9 system can be used to edit the Drosophila genome. However, most applications to date have relied on aberrant DNA repair to stochastically generate frameshifting indels and adoption has been limited by a lack of tools for efficient identification of targeted events. Here we report optimized tools and techniques for expanded application of the CRISPR/Cas9 system in Drosophila through homology-directed repair (HDR) with double-stranded DNA (dsDNA) donor templates that facilitate complex genome engineering through the precise incorporation of large DNA sequences, including screenable markers. Using these donors, we demonstrate the replacement of a gene with exogenous sequences and the generation of a conditional allele. To optimize efficiency and specificity, we generated transgenic flies that express Cas9 in the germline and directly compared HDR and off-target cleavage rates of different approaches for delivering CRISPR components. We also investigated HDR efficiency in a mutant background previously demonstrated to bias DNA repair toward HDR. Finally, we developed a web-based tool that identifies CRISPR target sites and evaluates their potential for off-target cleavage using empirically rooted rules. Overall, we have found that injection of a dsDNA donor and guide RNA-encoding plasmids into vasa-Cas9 flies yields the highest efficiency HDR and that target sites can be selected to avoid off-target mutations. Efficient and specific CRISPR/Cas9-mediated HDR opens the door to a broad array of complex genome modifications and greatly expands the utility of CRISPR technology for Drosophila research.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Screening of CRISPR/Cas9-Induced Events in Drosophila Using a Co-CRISPR Strategy

Genome editing using the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and associated nuclease (Cas9) enables specific genetic modifications, including deletions, insertions, and substitutions in numerous organisms, such as the fruit fly Drosophila melanogaster One challenge of the CRISPR/Cas9 system can be the laborious and time-consuming screening required to find CRISPR-...

متن کامل

Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in Drosophila.

The type II clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) system has emerged recently as a powerful method to manipulate the genomes of various organisms. Here, we report a toolbox for high-efficiency genome engineering of Drosophila melanogaster consisting of transgenic Cas9 lines and versatile guide RNA (gRNA) expression plasmids. Systematic evalua...

متن کامل

Optimization of DNA, RNA and RNP Delivery for Efficient Mammalian Cell Engineering Optimization of DNA, RNA and RNP Delivery for Efficient Mammalian Cell Engineering using CRISPR/Cas9

The CRISPR/Cas9 genome-editing platform is a versatile and powerful technology to efficiently create genetically engineered living cells and organisms. This system requires a complex of Cas9 endonuclease protein with a gene-targeting guide RNA (gRNA) to introduce double-strand DNA breaks (DSBs) at specific locations in the genome. The cell then repairs the resulting DSBs using either homology-d...

متن کامل

Homology-directed repair with DharmaconTM Edit-RTM CRISPR-Cas9 reagents and single-stranded DNA oligos

CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 (CRISPR-associated protein 9) is a revolutionary tool that utilizes an RNA-guided nuclease for efficient site-directed genome engineering in various eukaryotic systems. The double-strand breaks (DSBs) created by CRISPR-Cas9 are repaired in the cell by two predominant mechanisms: imprecise non-homologous end joining (NHEJ) a...

متن کامل

Baculoviral delivery of CRISPR/Cas9 facilitates efficient genome editing in human cells

The CRISPR/Cas9 system is a highly effective tool for genome editing. Key to robust genome editing is the efficient delivery of the CRISPR/Cas9 machinery. Viral delivery systems are efficient vehicles for the transduction of foreign genes but commonly used viral vectors suffer from a limited capacity in the genetic information they can carry. Baculovirus however is capable of carrying large exo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 196  شماره 

صفحات  -

تاریخ انتشار 2014